Feature subset selection based on fuzzy neighborhood rough sets

نویسندگان

  • Changzhong Wang
  • Ming-Wen Shao
  • Qiang He
  • Yuhua Qian
  • Yali Qi
چکیده

Rough set theory has been extensively discussed in machine learning and pattern recognition. It provides us another important theoretical tool for feature selection. In this paper, we construct a novel rough set model for feature subset selection. First, we define the fuzzy decision of a sample by using the concept of fuzzy neighborhood. A parameterized fuzzy relation is introduced to characterize fuzzy information granules for analysis of real-valued data. Then, we use the relationship between fuzzy neighborhood and fuzzy decision to construct a new rough set model: fuzzy neighborhood rough set model. Based on this model, the definitions of upper and lower approximation, boundary region and positive region are given, and the effects of parameters on these concepts are discussed. To make the new model tolerate noises in data, we introduce a variable-precision fuzzy neighborhood rough set model. This model can decrease the possibility that a sample is classified into a wrong category. Finally, we define the dependency between fuzzy decision and condition attributes and employ the dependency to evaluate the significance of a candidate feature, using which a greedy feature subset selection algorithm is designed. The proposed algorithm is compared with some classical algorithms. The experiments show that the proposed algorithm gets higher classification performance and the numbers of selected features are relatively small. © 2016 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

Diagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets

With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...

متن کامل

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

Fuzzy-Rough Simultaneous Attribute Selection and Feature Extraction Algorithm

Among the huge number of attributes or features present in real-life data sets, only a small fraction of them are effective to represent the data set accurately. Prior to analysis of the data set, selecting or extracting relevant and significant features is an important preprocessing step used for pattern recognition, data mining, and machine learning. In this regard, a novel dimensionality red...

متن کامل

Min-Uncertainty & Max-Certainty Criteria of Neighborhood Rough- Mutual Feature Selection

Feature Selection (FS) is viewed as an important preprocessing step for pattern recognition, machine learning, and data mining. Most existing FS methods based on rough set theory use the dependency function for evaluating the goodness of a feature subset. However, these FS methods may unsuccessfully be applied on dataset with noise, which determine only information from a positive region but ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 111  شماره 

صفحات  -

تاریخ انتشار 2016